A Robust Solution to Multi-modal Image Registration by Combining Mutual Information with Multi-scale Derivatives

نویسندگان

  • Philip A. Legg
  • Paul L. Rosin
  • A. David Marshall
  • James E. Morgan
چکیده

In this paper we present a novel method for performing image registration of different modalities. Mutual Information (MI) is an established method for performing such registration. However, it is recognised that standard MI is not without some problems, in particular it does not utilise spatial information within the images. Various modifications have been proposed to resolve this, however these only offer slight improvement to the accuracy of registration. We present Feature Neighbourhood Mutual Information (FNMI) that combines both image structure and spatial neighbourhood information which is efficiently incorporated into Mutual Information by approximating the joint distribution with a covariance matrix (c.f. Russakoff's Regional Mutual Information). Results show that our approach offers a very high level of accuracy that improves greatly on previous methods. In comparison to Regional MI, our method also improves runtime for more demanding registration problems where a higher neighbourhood radius is required. We demonstrate our method using retinal fundus photographs and scanning laser ophthalmoscopy images, two modalities that have received little attention in registration literature. Registration of these images would improve accuracy when performing demarcation of the optic nerve head for detecting such diseases as glaucoma.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Subsampling Method for 3D Multimodality Medical Image Registration Based on Mutual Information

Mutual information (MI) is a widely used similarity metric for multimodality image registration. However, it involves an extremely high computational time especially when it is applied to volume images. Moreover, its robustness is affected by existence of local maxima. The multi-resolution pyramid approaches have been proposed to speed up the registration process and increase the accuracy of th...

متن کامل

Optimized co-registration method of Spinal cord MR Neuroimaging data analysis and application for generating multi-parameter maps

Introduction: The purpose of multimodal and co-registration In MR Neuroimaging is to fuse two or more sets images (T1, T2, fMRI, DTI, pMRI, …) for combining the different information into a composite correlated data set in order to visualization, re-alignment and generating transform to functional Matrix. Multimodal registration and motion correction in spinal cord MR Neuroimag...

متن کامل

Multi-modal Image Registration by Quantitative-Qualitative Measure of Mutual Information (Q-MI)

This paper presents a novel measure of image similarity, called quantitative-qualitative measure of mutual information (Q-MI), for multi-modal image registration. Conventional information measure, i.e., Shannon’s entropy, is a quantitative measure of information, since it only considers probabilities, not utilities of events. Actually, each event has its own utility to the fulfillment of the un...

متن کامل

Multi-dimensional Mutual Information Based Robust Image Registration Using Maximum Distance-Gradient-Magnitude

In this paper, a novel spatial feature, namely maximum distance-gradient-magnitude (MDGM), is defined for registration tasks. For each voxel in an image, the MDGM feature encodes spatial information at a global level, including both edges and distances. We integrate the MDGM feature with intensity into a two-element attribute vector and adopt multi-dimensional mutual information as a similarity...

متن کامل

Two Phase Non-Rigid Multi-Modal Image Registration Using Weber Local Descriptor-Based Similarity Metrics and Normalized Mutual Information

Non-rigid multi-modal image registration plays an important role in medical image processing and analysis. Existing image registration methods based on similarity metrics such as mutual information (MI) and sum of squared differences (SSD) cannot achieve either high registration accuracy or high registration efficiency. To address this problem, we propose a novel two phase non-rigid multi-modal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention

دوره 12 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2009